Bi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
نویسنده
چکیده
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
منابع مشابه
Ja n 20 02 Separation of variables in quasi - potential systems of bi - cofactor form Krzysztof Marciniak
We perform variable separation in the quasi-potential systems of equations of the form q̈ = −A−1∇k = −Ã−1∇k̃ , where A and à are Killing tensors, by embedding these systems into a bi-Hamiltonian chain and by calculating the corresponding Darboux-Nijenhuis coordinates on the symplectic leaves of one of the Hamiltonian structures of the system. We also present examples of the corresponding separati...
متن کاملDegenerate Frobenius manifolds and the bi-Hamiltonian structure of rational Lax equations
The bi-Hamiltonian structure of certain multi-component integrable systems, generalizations of the dispersionless Toda hierarchy, is studied for systems derived from a rational Lax function. One consequence of having a rational rather than a polynomial Lax functions is that the corresponding bi-Hamiltonian structures are degenerate, i.e. the metric which defines the Hamiltonian structure has va...
متن کاملv 1 1 0 N ov 1 99 8 ON A CLASS OF DYNAMICAL SYSTEMS BOTH QUASI - BI - HAMILTONIAN AND BI - HAMILTONIAN
It is shown that a class of dynamical systems (encompassing the one recently considered by F. Calogero in [1]) is both quasi-bi-Hamiltonian and bi-Hamiltonian. The first formulation entails the separability of these systems; the second one is obtained trough a non canonical map whose form is directly suggested by the associated Nijenhuis tensor.
متن کاملThe quasi-bi-Hamiltonian formulation of the Lagrange top
Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the possible reductions of the Poisson tensors, the vector field and its Hamiltonian functions on a four-dimensional space. We show that the vector field of the Lagrange top possesses, on the reduced phase space, a quasibi-Hamiltonian formulation, which provides a set of separation var...
متن کاملFrobenius Manifolds: Natural Submanifolds and Induced Bi-hamiltonian Structures
Submanifolds of Frobenius manifolds are studied. In particular, so-called natural submanifolds are defined and, for semi-simple Frobenius manifolds, classified. These carry the structure of a Frobenius algebra on each tangent space, but will, in general, be curved. The induced curvature is studied, a main result being that these natural submanifolds carry a induced pencil of compatible metrics....
متن کامل